Dynein Modifiers in C. elegans: Light Chains Suppress Conditional Heavy Chain Mutants
نویسندگان
چکیده
Cytoplasmic dynein is a microtubule-dependent motor protein that functions in mitotic cells during centrosome separation, metaphase chromosome congression, anaphase spindle elongation, and chromosome segregation. Dynein is also utilized during interphase for vesicle transport and organelle positioning. While numerous cellular processes require cytoplasmic dynein, the mechanisms that target and regulate this microtubule motor remain largely unknown. By screening a conditional Caenorhabditis elegans cytoplasmic dynein heavy chain mutant at a semipermissive temperature with a genome-wide RNA interference library to reduce gene functions, we have isolated and characterized twenty dynein-specific suppressor genes. When reduced in function, these genes suppress dynein mutants but not other conditionally mutant loci, and twelve of the 20 specific suppressors do not exhibit sterile or lethal phenotypes when their function is reduced in wild-type worms. Many of the suppressor proteins, including two dynein light chains, localize to subcellular sites that overlap with those reported by others for the dynein heavy chain. Furthermore, knocking down any one of four putative dynein accessory chains suppresses the conditional heavy chain mutants, suggesting that some accessory chains negatively regulate heavy chain function. We also identified 29 additional genes that, when reduced in function, suppress conditional mutations not only in dynein but also in loci required for unrelated essential processes. In conclusion, we have identified twenty genes that in many cases are not essential themselves but are conserved and when reduced in function can suppress conditionally lethal C. elegans cytoplasmic dynein heavy chain mutants. We conclude that conserved but nonessential genes contribute to dynein function during the essential process of mitosis.
منابع مشابه
The Retrograde IFT Machinery of C. elegans Cilia: Two IFT Dynein Complexes?
We analyzed the relatively poorly understood IFT-dynein (class DYNC2)-driven retrograde IFT pathway in C. elegans cilia, which yielded results that are surprising in the context of current models of IFT. Assays of C. elegans dynein gene expression and intraflagellar transport (IFT) suggest that conventional IFT-dynein contains essential heavy (CHE-3), light-intermediate (XBX-1), plus three ligh...
متن کاملSomatic CRISPR–Cas9-induced mutations reveal roles of embryonically essential dynein chains in Caenorhabditis elegans cilia
Cilium formation and maintenance require intraflagellar transport (IFT). Although much is known about kinesin-2-driven anterograde IFT, the composition and regulation of retrograde IFT-specific dynein remain elusive. Components of cytoplasmic dynein may participate in IFT; however, their essential roles in cell division preclude functional studies in postmitotic cilia. Here, we report that indu...
متن کاملIdentification of a novel region of the cytoplasmic Dynein intermediate chain important for dimerization in the absence of the light chains.
Cytoplasmic dynein is the multisubunit protein complex responsible for many microtubule-based intracellular movements. Its cargo binding domain consists of dimers of five subunits: the intermediate chains, the light intermediate chains, and the Tctex1, Roadblock, and LC8 light chains. The intermediate chains have a key role in the dynein complex. They bind the three light chains and the heavy c...
متن کاملIdentification of a Ca(2+)-binding light chain within Chlamydomonas outer arm dynein.
We describe here the molecular cloning of the M(r) 18,000 dynein light chain from the outer arm of Chlamydomonas flagella. In vivo, this molecule is directly associated with the gamma dynein heavy chain. Sequence analysis indicates that this light chain is a novel member of the calmodulin superfamily of Ca2+ binding regulatory proteins; this molecule is 42, 37 and 36% identical to calmodulin, c...
متن کاملIsolation and characterization of a novel dynein that contains C and A heavy chains from sea urchin sperm flagellar axonemes.
A novel dynein (C/A dynein), which is composed of C and A heavy chains, two intermediate chains and several light chains, was isolated from sea urchin sperm flagella. The C/A dynein was released by the treatment with 0.7 M NaCl plus 5 mM ATP from the axonemes depleted of outer arm 21 S dynein. Sedimentation coefficient of this dynein was estimated by sucrose density gradient centrifugation to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Genetics
دوره 3 شماره
صفحات -
تاریخ انتشار 2007